Dr. Brandon Runnels

Dr. Brandon Runnels portrait

Dr. Brandon Runnels

Assistant Professor • Computational solid mechanics
OCSE A431

Education

  • PhD, Mechanical Engineering
    California Institute of Technology, 2015
  • MS, Mechanical Engineering
    California Institute of Technology, 2012
  • BS, Mechanical Engineering
    New Mexico Institute of Mining and Technology, 2011

Experience

  • Assistant Professor, Department of Mechanical and Aerospace Engineering
    University of Colorado Colorado Springs, August 2015-present
  • Graduate Research Assistant
    California Institute of Technology, Fall 2011-Spring 2015
  • Graduate Research Assistant
    Los Alamos National Laboratory Fall 2011-Spring 2015

Professional Affiliations

  • Society for Industrial and Applied Mathematics (SIAM)
  • American Physical Society (APS)
  • The Minerals, Metals & Materials Society (TMS)
  • Society of Engineering Science (SES)
  • Engineering Mechanics Institute (EMI)
  • Tau Beta Pi Engineering Honors Society
  • Kappa Mu Epsilon Mathematics Honors Society

Publications

Scientific Review Activities

  • Scripta Materialia
  • Journal of Spacecraft and Rockets
  • Computational Materials Science
  • Journal of Applied Physics
  • Journal of the Mechanics and Physics of Solids
  • Microsystem Technologies
  • Swiss National Computing Centre

Honors and Awards

  • Recipient, 2017 AFOSR Summer Faculty Fellowship
  • Recipient, 2014 Seaborg Institute Research Fellowship

Research Summary

Materials are uniquely complex mechanical systems that exhibit vastly different behavior at a wide range of length and time scales. To understand the properties that define bulk material behavior, to predict material response, and to design novel materials with engineered macroscopic properties, it is necessary to model the mechanics of materials across scales. The objective of the multiscale materials group is to use computational and analytical techniques to predictively model material behavior at all scales.

Atomistic methods such as molecular dynamics allow the prediction of atomic microstructures and connection to bulk material properties. The gap between the micro and mesoscale is bridged by the construction of multiscale models that inform continuum-level polycrystal simulations with atomic and lattice level information (such as crystal plasticity or the covariance model for grain boundary energy). Continuum polycrystal simulations can be subsequently used to determine bulk properties of a material in a truly multi-scale sense.

To conduct simulations of this scale, high performance computational methods must be explored that leverage modern heterogeneous computing architectures such as those provided by GPUs. The multiscale materials group addressis this challenge in order to facilitate the next generation of computational materials design and testing.

Brief Biography

Dr. Brandon Runnels received his PhD from the California Institute of Technology (Caltech) in June 2015 after receiving his B.S. and M.S. in Mechanical Engineering from New Mexico Tech (2011) and Caltech (2012), respectively, while working as a research assistant at Los Alamos National Laboratory for almost 10 years. In August 2015 he joined the Mechanical & Aerospace Engineering faculty at the University of Colorado in Colorado Springs, CO. Dr. Runnels’ interests are focused on multiscale materials modeling, and he leads a research group with activities ranging from development of high performance computing methods, to conducting atomistic simulation studies of metals and polymers, to constructing analytic multiscale models for material behavior, to phase field and finite element simulation.